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T E M P E R A T U R E  F I E L D S  IN  A T W O - L A Y E R E D  P L A T E  

W I T H  A S E M I - I N F I N I T E  SLIT'  A L O N G  T H E  I N T E R F A C E  

B. V. Nerubai lo  and L. G. Smirnov  UDC 539.412 

In this paper, we study steady temperature fields in a two-layered plate containing a semi-infinite slit 
along the interface. It is assumed that the heat conduction coefficient is constant at the boundary and that 
outside of the slit the contact is ideal. To obtain a solution we use an analog of the Wiener-Hopf method. 
Calculations are illustrated by curves of temperature field distribution along the sides of the slit. 

We assume that the heat-conducting layers (0 < y < hi, - c ~  < x < + ~ )  and (-h2 < y < O, 
- o o  < x < 0) are in ideal contact when x > 0 and are thermally insulated from one another when x < 0. 

The heat conduction equations for the layers are written as 

the boundary conditions are 

~.OTil 
3 ~  

OY ly=yj 

/,T~ = ~ 02TJ a ~  + ~ = 0 (j  = 1,2); (1) 

I 
= ( / 3 i T i + 7 i ) [  ( j  = 1,2;  yl = h, ,  y2 = - h 2 ) ,  

I y=yj 

and the conjugation conditions at the common boundary of the layers are 

,~10T1 OT2 
~ - y  = A~-~-y = 0 (y = 0, x < 0); 

T, = T2, )q 07'1 = )~20T2 ~ (y=O, ~>o). 

(2) 

(3) 

(4) 

Here Aj is the heat conduction coefficient of the material of the first and second layers, respectively (j = 1,2) 
and hi ,  /3i, and 7j are constants (j = 1,2) (a i = 0 when the boundary condition is of the first kind and 
/3i # 0). We seek a solution Ti(x , y) in the form 

Ti(x,y ) = T;(z ,y)  + T~~ (5) 

where T~~ y) is a solution of Eq. (1) subject to the boundary conditions (2) and conjugation condition (4) 
which are satisfied along the whole line ( - c o  < z < +c~). 

The solution T~~ y) is 

T(~ = aiy + bj (j = 1,2). 

Here 

al -- (71fl2 -72fll)/((Xl/32 -/31/32hl - (x2/31)~1/)~2 -/31f12)~lh2/~2), 

bl = (((~1 -/31hi)a1 - 71)//31, a2 = ()~l/)~2)al, b2 = hi. 
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Conditions (1)-(4) with account of (5) can then be written as (q = a]A1 = a2)~2) 

OT;] ] 
aj---~--y = fliT/ (j = 1,2); 

Y=Yj Y=Yj 

OTr[ = _ q  ' OT~I = q ( z < 0 ) ;  
Oy [~=0 Aa' Oy ~,=o A~ 

OT; Or; 
T~* =T~ , a~ O~ ~=0=12 ~ (~>0). 

y=0 y=0 0_ y=0 

We will seek T~(x,y)in the form [1] 

ioo 
1 B3(~)e-'~)e ~ d~, 

= J + 
- - I 0 0  

where Aj(~) and Bi(~) are unknown functions (j = 1, 2). Using (9), from conditions (6), we obtain 

ioo 
1 

whence 

Bj(~) = e2i(uj(ie~j~ - flj)/(icU~ + flj)Aj(~) (j = 1,2). 

We now represent conditions (7) and (8) as 

leo 
1 

27ri f Xl(~)Al(~)e~X d~ - 
-- |OO 

ioo ioo 
1 

1 /y,(~)Al(~)e~ d~=~i  f Y2(~)A2(~)er 27ri 
~ | 0 0  - - | 0 0  

Here 

ia j~  -- fij 2i~yj~ xs(~) = i~ 1-  i~,j~ + ~je j; 

(6) 

(7) 

(8) 

(9) 

iOO 

q 1 f q AI' 2 7 r i  X2(~)A2(~)e ~* d~ . . . .  A2' (10) 
--$CqO 

ioo ioo 
"~1 f xa(SlAa(~)e~.d~= ~2 f x~(r162162 (~1 

- - $ 0 0  - - I O 0  

iaj~ - flj e2i~y j (j = 1, 2). 
YJ(~) = 1 + ~ T f l j  

Setting A~(~) = Xj(~)Aj(~) , instead of (10) and (11) we have 

If we now set A~(~) 

iOO 1/ 
2~ri 

i oo  

1 f q (~<0);  (12) 2r A] (~)e ~ d~ = - A--~ 
--IOO 

ioo 
1 f q (x < 0); (13) 2ai A~(()e ~ d~ = A2 

--SOO 

(x > 0); (14) 
i o o  

1 
YI(~)X~-I(~)A*I(~)e ~z d~ = 2'~'i / Y2(~)X21(~)A~(~)eSZ d~ 

--$OO 

ioo ioo 
A] A2 

2~'i ] A;(~)e~Zd~ = 2~ri / A~(~)e ~ d ~  (x > 0). 
-- |OO --$OO 

(15) 

A * A1/ 2A1(~), condition (15) is satisfied automatically and conditions (12) and (13) 
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reduces to one. As a result, we obtain the 

where 

following two conditions: 

ioo 1 ] q 
2~ri  A~(~)e ~z d4 = - A-~ 

- - t o o  

ioo 

2, i �9 = 0 

~tOO 

(x < 0); (16) 

( x > 0 ) ,  (17) 

F(~) = Fo(~)/(FI (~)F2(~)), 

F0(~) = [(o~1~ cos(~yl) - ~1 sin(~yl))(a2~ sin(~y2) + f12 cos(4y2)) 

- 7(a i~  sin(~yl) +/32 cos(~yi))(~2~ cos(~y2) -/32 sin(~y2))]/~, (18) 

F1(4) = otl~ sin(~yl) +/31 cos(4yl), F2(~) = a2~ sin(~y2) +/32 cos(4y2). 

The functions Fj(~) (j = 0, 1,2) are entire functions of the first order [1]; moreover, each of them is an 
even function of 4. Hence, the Weierstrass representation for each of them according to Hadamard's theorem 
[2] has the form 

O0 

H 
r n : l  

Here b is a constant and ~m are zeros of the function S(~) (m = 1, 2 , . . . ,  co). 
The function F(4) can be written in the form 

F(~) = F+(~)F-(4), (19) 

where 

r g ( ~ )  =g(~)  H (1-~/a+m0 (1-~/a+ml)  H (1-~/a+m2 , F+(~)_  F+(~)F+(~) 
r n = l  .,=1 1 (20) 

F - ( ~ ) -  F~  = 1"I (1-~/a~n0 ( 1 - ~ / a m l )  1-I ( 1 - ~ / a m 2  ; 

4- ami are zeros of the functions Fi(~) lying on the right-hand and left-hand side of the complex plane, 
respectively (j = 0, 1,2 and m = 1 , 2 , . . . ,  co), and g(~) is an entire function without zeros in the whole 
complex plane. 

We set Aj(~) = a/(~F-(~)) (a is an unknown constant) and substitute this into expression (17). As a 
result, we have 

ioo ioo a/  2~i aF(~)/(4F-(~))e ~ d~ = F+(~)/~e ~ d~ (x > 0). (21) 
2~i 

- - t O O  - - t O O  

For x > 0 in the region Re~ < 0, the holomorphic function F+(~)/~ has no poles and satisfies the conditions 
of Jordan's lemma [1]. Indeed, in the region Re(  < 0, as I~1 ~ co, the asymptotic formula 

F(4) = F+(4)F-(4) ,,~ (1 -7) 

is valid, whence, taking into account (19) and (20), we infer that 

F+([ )  ,-~ F- (~)  --~ ~/(1 -7) =cons t ,  

as I([ --* co (Re4 < 0) and hence lim (F+([)/4) = 0 and the integral appearing in (21) vanishes. Then, 
I ~ l - - * o o  
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subs t i t u t i ng  AI({) = a/(F-({){)  into (16), we obtain 

ioo 

t f q ( ~ < 0 ) .  2~ri . a/(~F-(~))e(~ d~ = .~1 
- - $ 0 0  

Hence, since the  function also satisfies the  conditions of Jordan 's  lemma for Re~ ) 0 and has a single pole of 
the first order at ( = 0, we have a = q/A1. Bearing (10) in mind, we write the expression for T~(z, g): 

ioo 
1 Bj (~)e -i~y) e ~x d~ r ; ( x , y ) -  27ri f (AJ(~)ei~U + 

~ I ( X )  

ioo 

- - S O 0  

ioo 

2~ri . 
- -  I(:X~ 

ico 

_ (q/Aj) / (aj~cos(~(y- yj))+ fljsin(~(y- yi)))F~'(~)/(~2F+(~)Fo(~))e '~ d~ 
2~ri . 

- - 1 0 0  

(k = 1, if j = 2 and k = 2, if j = 1). 
The  functions Fj(~) (j  = 1,2) are entire functions of the  first order [2] and each of them is an even 

function of ~; therefore, according to Hadamard 's  theorem the Weierstrass representation for each of them 
has the  form 

o o  

Fj(4) = dj 1-I (1 -- (2/a2j), 
m = l  

where dj is a constant  and amj are zeros of the function Fj(~) (m = 1 , 2 , . . . ,  oo). Using the expressions for 
Fi(~) we readily obtain 

dj = l~m Fj(~) = l imF/ (~ )  = F[ (0 )  = ~j (j = t,2). 

As a result, according to the residue theory, for x > 0 ( R e (  < 0), we obtain 

T ; ( ~ , ~ ) =  q oo 
Aj---~j Z {[ajamoC~ YJ)) + ~jsin(amo(Y-- YJ))]X(amo)/(amo)aea~~ 

m = l  

Here 

X(y) : H (1-  y/aS~ k (1-  y/a+i) f i  (1 - y/a~o) ; 
m=l 1 rn----1 

a prime indicates tha t  terms in the products  are dropped if they are equal to zero; a~j are zeros of the 
functions Fj(~) (j  = 0, l, 2 and m = 1 , 2 , . . . ,  co) lying on the right-hand and left-hand complex half-planes, 
respectively. 

For x < 0 (Re~ > 0) we have 

X(amj)/(amj)  e +~ , (y  -- y j )+~j  T ; ( x , y ) -  aJ~J = 

So far we have assumed that  q = const. If q appearing in formulas (6) has the form 

y=0 y=O 
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Fig. 1. 

where pn > 0 (x < 0), it is sufficient to set A~(~) = a / ( F - ( ( ) ( ~ - p n ) ) .  Taking into account that the function 

A~(~) now has an additional pole at the point ~ = pn, after analogous calculations (pn ~ ami; n, m = 1,2,...; 
j = 0,1,2),  we find 

{s } q [ jO oCOS(aao(y--yj/)+ jsin(< o(y--yj))]X(a o)e~ (22) 

q ~ja+jcos(a+i(y_yj )  ) W~js in (a+j (y -y , ) ) ]X(a+j )ea+ix / ( (a+j )2 (a+j -Pn) )  
; j Z j  = 

< 0). (23) 

Since any function f ( t)  that  is continuous on the interval [0, 1] can be approximated with any degree of 
N 

accuracy by a polynomial of the form QN(t) = ~ qnt p'* (t p" is a complete set of functions in the interval 
n = 0  

[0, 1] and pn are real), introducing new variable t = e r (x < 0), we write the function q(x) as 
OO 

q(x) =q( ln t )=  q,(t)= ~ qkt pk = ~_, qke pkg. 
k=0 k----0 

The solution then is represented by a superposition of solutions (22) and (23). The function q(x) is not a 
constant if 7i are functions of x. Then it is sufficient to apply a Laplace transform with respect to the x 

coordinate to determine T(~ and q(x) = AlOT(~ Summing solutions for (22) and (23), we 

obtain the desired solution for q(x) = ~ qke pkg. Figure 1 shows the temperature Tj(x, y) at the point y = 0 
k=O 

as a function of x on different sides of the boundary for the case of c~j = 0, ~j = 1 (j = 1,2), 71 = - 1 ,  
72 -- 0, 7 = 1, hi = 1, h2 = 2 (curves 1 and 2 represent the temperature distribution at the external surfaces, 
curves 3 and 4, on the sides of the slit, and curve 5, in the ideal contact region). 
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