TEMPERATURE FIELDS IN A TWO-LAYERED PLATE WITH A SEMI-INFINITE SLIT ALONG THE INTERFACE

B. V. Nerubailo and L. G. Smirnov

UDC 539.412

In this paper, we study steady temperature fields in a two-layered plate containing a semi-infinite slit along the interface. It is assumed that the heat conduction coefficient is constant at the boundary and that outside of the slit the contact is ideal. To obtain a solution we use an analog of the Wiener-Hopf method. Calculations are illustrated by curves of temperature field distribution along the sides of the slit.

We assume that the heat-conducting layers ($0<y<h_{1},-\infty<x<+\infty$) and ($-h_{2}<y<0$, $-\infty<x<0$) are in ideal contact when $x>0$ and are thermally insulated from one another when $x<0$.

The heat conduction equations for the layers are written as

$$
\begin{equation*}
\Delta T_{j}=\frac{\partial^{2} T_{j}}{\partial x^{2}}+\frac{\partial^{2} T_{j}}{\partial y^{2}}=0 \quad(j=1,2) \tag{1}
\end{equation*}
$$

the boundary conditions are

$$
\begin{equation*}
\left.\alpha j \frac{\partial T_{j}}{\partial y}\right|_{y=y_{j}}=\left.\left(\beta_{j} T_{j}+\gamma_{j}\right)\right|_{y=y_{j}} \quad\left(j=1,2 ; y_{1}=h_{1}, y_{2}=-h_{2}\right) \tag{2}
\end{equation*}
$$

and the conjugation conditions at the common boundary of the layers are

$$
\begin{gather*}
\lambda_{1} \frac{\partial T_{1}}{\partial y}=\lambda_{2} \frac{\partial T_{2}}{\partial y}=0 \quad(y=0, x<0) \tag{3}\\
T_{1}=T_{2}, \quad \lambda_{1} \frac{\partial T_{1}}{\partial y}=\lambda_{2} \frac{\partial T_{2}}{\partial y} \quad(y=0, x>0) \tag{4}
\end{gather*}
$$

Here λ_{j} is the heat conduction coefficient of the material of the first and second layers, respectively $(j=1,2)$ and α_{j}, β_{j}, and γ_{j} are constants $(j=1,2)\left(\alpha_{j}=0\right.$ when the boundary condition is of the first kind and $\left.\beta_{j} \neq 0\right)$. We seek a solution $T_{j}(x, y)$ in the form

$$
\begin{equation*}
T_{j}(x, y)=T_{j}^{*}(x, y)+T_{j}^{(0)}(x, y) \tag{5}
\end{equation*}
$$

where $T_{j}^{(0)}(x, y)$ is a solution of Eq. (1) subject to the boundary conditions (2) and conjugation condition (4) which are satisfied along the whole line $(-\infty<x<+\infty)$.

The solution $T_{j}^{(0)}(x, y)$ is

$$
T_{j}^{(0)}(x, y)=a_{j} y+b_{j} \quad(j=1,2) .
$$

Here

$$
\begin{gathered}
a_{1}=\left(\gamma_{1} \beta_{2}-\gamma_{2} \beta_{1}\right) /\left(\alpha_{1} \beta_{2}-\beta_{1} \beta_{2} h_{1}-\alpha_{2} \beta_{1} \lambda_{1} / \lambda_{2}-\beta_{1} \beta_{2} \lambda_{1} h_{2} / \lambda_{2}\right) \\
b_{1}=\left(\left(\alpha_{1}-\beta_{1} h_{1}\right) a_{1}-\gamma_{1}\right) / \beta_{1}, \quad a_{2}=\left(\lambda_{1} / \lambda_{2}\right) a_{1}, \quad b_{2}=b_{1}
\end{gathered}
$$

Institute of Applied Mechanics, Russian Academy of Sciences, Moscow 117334. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 2, pp. 151-156, March-April, 1996. Original article submitted January 30, 1995.

Conditions (1)-(4) with account of (5) can then be written as ($q=a_{1} \lambda_{1}=a_{2} \lambda_{2}$)

$$
\begin{gather*}
\left.\alpha_{j} \frac{\partial T_{j}^{*}}{\partial y}\right|_{y=y_{j}}=\left.\beta_{j} T_{j}^{*}\right|_{y=y_{j}} \quad(j=1,2) ; \tag{6}\\
\left.\frac{\partial T_{1}^{*}}{\partial y}\right|_{y=0}=-\frac{q}{\lambda_{1}},\left.\quad \frac{\partial T_{2}^{*}}{\partial y}\right|_{y=0}=-\frac{q}{\lambda_{2}} \quad(x<0) ; \tag{7}\\
\left.T_{1}^{*}\right|_{y=0}=\left.T_{2}^{*}\right|_{y=0},\left.\quad \lambda_{1} \frac{\partial T_{1}^{*}}{\partial y}\right|_{y=0}=\left.\lambda_{2} \frac{\partial T_{2}^{*}}{\partial y}\right|_{y=0} \quad(x>0) . \tag{8}
\end{gather*}
$$

We will seek $T_{j}^{*}(x, y)$ in the form [1]

$$
\begin{equation*}
T_{j}^{*}(x, y)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(A_{j}(\xi) \mathrm{e}^{i \xi y}+B_{j}(\xi) \mathrm{e}^{-i \xi y}\right) \mathrm{e}^{\xi x} d \xi \tag{9}
\end{equation*}
$$

where $A_{j}(\xi)$ and $B_{j}(\xi)$ are unknown functions ($j=1,2$). Using (9), from conditions (6), we obtain

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(i \alpha_{j} \xi\left(A_{j}(\xi) \mathrm{e}^{i \xi y_{j}}-B_{j}(\xi) \mathrm{e}^{-i \xi y_{j}}\right)-\beta_{j}\left(A_{j}(\xi) \mathrm{e}^{i \xi y_{j}}+B_{j}(\xi) \mathrm{e}^{-i \xi y_{j}}\right)\right) \mathrm{e}^{\xi x} d \xi=0
$$

whence

$$
B_{j}(\xi)=\mathrm{e}^{2 i \xi y_{j}}\left(i \alpha_{j} \xi-\beta_{j}\right) /\left(i \alpha_{j} \xi+\beta_{j}\right) A_{j}(\xi) \quad(j=1,2)
$$

We now represent conditions (7) and (8) as

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} X_{1}(\xi) A_{1}(\xi) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{1}}, \quad \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} X_{2}(\xi) A_{2}(\xi) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{2}} \tag{10}
\end{equation*}
$$

$\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} Y_{1}(\xi) A_{1}(\xi) \mathrm{e}^{\xi x} d \xi=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} Y_{2}(\xi) A_{2}(\xi) \mathrm{e}^{\xi x} d \xi, \quad \frac{\lambda_{1}}{2 \pi i} \int_{-i \infty}^{i \infty} X_{1}(\xi) A_{1}(\xi) \mathrm{e}^{\xi x} d \xi=\frac{\lambda_{2}}{2 \pi i} \int_{-i \infty}^{i \infty} X_{2}(\xi) A_{2}(\xi) e^{\xi x} d \xi$.
Here

$$
X_{j}(\xi)=i \xi\left(1-\frac{i \alpha_{j} \xi-\beta_{j}}{i \alpha_{j} \xi+\beta_{j}}{ }^{2 i \xi y_{j}}\right) ; \quad Y_{j}(\xi)=1+\frac{i \alpha_{j} \xi-\beta_{j}}{i \alpha_{j} \xi+\beta_{j}} e^{2 i \xi y_{j}} \quad(j=1,2)
$$

Setting $A_{j}^{*}(\xi)=X_{j}(\xi) A_{j}(\xi)$, instead of (10) and (11) we have

$$
\begin{gather*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} A_{1}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{1}} \quad(x<0) ; \tag{12}\\
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} A_{2}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{2}} \quad(x<0) ; \tag{13}\\
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} Y_{1}(\xi) X_{1}^{-1}(\xi) A_{1}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} Y_{2}(\xi) X_{2}^{-1}(\xi) A_{2}^{*}(\xi) \mathrm{e}^{\xi x} d \xi \quad(x>0) ; \tag{14}\\
\frac{\lambda_{1}}{2 \pi i} \int_{-i \infty}^{i \infty} A_{1}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=\frac{\lambda_{2}}{2 \pi i} \int_{-i \infty}^{i \infty} A_{2}^{*}(\xi) \mathrm{e}^{\xi x} d \xi \quad(x>0) . \tag{15}
\end{gather*}
$$

If we now set $A_{2}^{*}(\xi)=\lambda_{1} / \lambda_{2} A_{1}^{*}(\xi)$, condition (15) is satisfied automatically and conditions (12) and (13)
reduces to one. As a result, we obtain the following two conditions:

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} A_{1}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{1}} \quad(x<0) \tag{16}\\
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} F(\xi) A_{1}^{*}(\xi) \mathrm{e}^{\xi x} d \xi=0 \quad(x>0) \tag{17}
\end{align*}
$$

where

$$
\begin{gather*}
F(\xi)=F_{0}(\xi) /\left(F_{1}(\xi) F_{2}(\xi)\right), \\
F_{0}(\xi)=\left[\left(\alpha_{1} \xi \cos \left(\xi y_{1}\right)-\beta_{1} \sin \left(\xi y_{1}\right)\right)\left(\alpha_{2} \xi \sin \left(\xi y_{2}\right)+\beta_{2} \cos \left(\xi y_{2}\right)\right)\right. \\
\left.-\gamma\left(\alpha_{1} \xi \sin \left(\xi y_{1}\right)+\beta_{2} \cos \left(\xi y_{1}\right)\right)\left(\alpha_{2} \xi \cos \left(\xi y_{2}\right)-\beta_{2} \sin \left(\xi y_{2}\right)\right)\right] / \xi \tag{18}\\
F_{1}(\xi)=\alpha_{1} \xi \sin \left(\xi y_{1}\right)+\beta_{1} \cos \left(\xi y_{1}\right), \quad F_{2}(\xi)=\alpha_{2} \xi \sin \left(\xi y_{2}\right)+\beta_{2} \cos \left(\xi y_{2}\right) .
\end{gather*}
$$

The functions $F_{j}(\xi)(j=0,1,2)$ are entire functions of the first order [1]; moreover, each of them is an even function of ξ. Hence, the Weierstrass representation for each of them according to Hadamard's theorem [2] has the form

$$
f(\xi)=\mathrm{e}^{b} \prod_{m=1}^{\infty}\left(1-\xi^{2} / \delta_{m}^{2}\right)
$$

Here b is a constant and δ_{m} are zeros of the function $f(\xi) \quad(m=1,2, \ldots, \infty)$.
The function $F(\xi)$ can be written in the form

$$
\begin{equation*}
F(\xi)=F^{+}(\xi) F^{-}(\xi) \tag{19}
\end{equation*}
$$

where

$$
\begin{gather*}
F^{+}(\xi)=\frac{F_{0}^{+}(\xi)}{F_{1}^{+}(\xi) F_{2}^{+}(\xi)}=g(\xi) \prod_{m=1}^{\infty}\left(1-\xi / a_{m 0}^{+}\right) /\left(\prod_{m=1}^{\infty}\left(1-\xi / a_{m 1}^{+}\right) \prod_{m=1}^{\infty}\left(1-\xi / a_{m 2}^{+}\right)\right) \tag{20}\\
F^{-}(\xi)=\frac{F_{0}^{-}(\xi)}{F_{1}^{-}(\xi) F_{2}^{-}(\xi)}=\prod_{m=1}^{\infty}\left(1-\xi / a_{m 0}^{-}\right) /\left(\prod_{m=1}^{\infty}\left(1-\xi / a_{m 1}^{-}\right) \prod_{m=1}^{\infty}\left(1-\xi / a_{m 2}^{-}\right)\right)
\end{gather*}
$$

$a_{m j}^{ \pm}$are zeros of the functions $F_{j}(\xi)$ lying on the right-hand and left-hand side of the complex plane, respectively $(j=0,1,2$ and $m=1,2, \ldots, \infty)$, and $g(\xi)$ is an entire function without zeros in the whole complex plane.

We set $A_{j}^{*}(\xi)=a /\left(\xi F^{-}(\xi)\right)$ (a is an unknown constant) and substitute this into expression (17). As a result, we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} a F(\xi) /\left(\xi F^{-}(\xi)\right) \mathrm{e}^{\xi x} d \xi=\frac{a}{2 \pi i} \int_{-i \infty}^{i \infty} F^{+}(\xi) / \xi \mathrm{e}^{\xi x} d \xi \quad(x>0) \tag{21}
\end{equation*}
$$

For $x>0$ in the region $\operatorname{Re} \xi<0$, the holomorphic function $F^{+}(\xi) / \xi$ has no poles and satisfies the conditions of Jordan's lemma [1]. Indeed, in the region $\operatorname{Re} \xi<0$, as $|\xi| \rightarrow \infty$, the asymptotic formula

$$
F(\xi)=F^{+}(\xi) F^{-}(\xi) \sim(1-\gamma)
$$

is valid, whence, taking into account (19) and (20), we infer that

$$
F^{+}(\xi) \sim F^{-}(\xi) \sim \sqrt{(1-\gamma)}=\text { const }
$$

as $|\xi| \rightarrow \infty(\operatorname{Re} \xi<0)$ and hence $\lim _{|\xi| \rightarrow \infty}\left(F^{+}(\xi) / \xi\right)=0$ and the integral appearing in (21) vanishes. Then,
substituting $A_{1}^{*}(\xi)=a /\left(F^{-}(\xi) \xi\right)$ into (16), we obtain

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} a /\left(\xi F^{-}(\xi)\right) \mathrm{e}^{\xi x} d \xi=-\frac{q}{\lambda_{1}} \quad(x<0) .
$$

Hence, since the function also satisfies the conditions of Jordan's lemma for $\operatorname{Re} \xi \geqslant 0$ and has a single pole of the first order at $\xi=0$, we have $a=q / \lambda_{1}$. Bearing (10) in mind, we write the expression for $T_{j}^{*}(x, y)$:

$$
\begin{gathered}
T_{j}^{*}(x, y)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(A_{j}(\xi) \mathrm{e}^{\mathrm{i} \xi y}+B_{j}(\xi) \mathrm{e}^{-i \xi y}\right) \mathrm{e}^{\xi x} d \xi \\
=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(\mathrm{e}^{i \xi y}+\mathrm{e}^{-i \xi y+2 i \xi y_{j}}\left(i \alpha_{j}-\beta_{j}\right) /\left(i \alpha_{j}+\beta_{j}\right)\right) / X_{j}(\xi) A_{j}^{*}(\xi) \mathrm{e}^{\xi x} d \xi \\
=\frac{\left(q / \lambda_{j}\right)}{2 \pi i} \int_{-i \infty}^{i \infty}\left(\alpha_{j} \xi \cos \left(\xi\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(\xi\left(y-y_{j}\right)\right)\right) /\left(\xi^{2} F_{j}(\xi) F^{-}(\xi)\right) \mathrm{e}^{\xi x} d \xi \\
=\frac{\left(q / \lambda_{j}\right)}{2 \pi i} \int_{-i \infty}^{i \infty}\left(\alpha_{j} \xi \cos \left(\xi\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(\xi\left(y-y_{j}\right)\right)\right) F_{k}^{-}(\xi) /\left(\xi^{2} F_{j}^{+}(\xi) F_{0}^{-}(\xi)\right) \mathrm{e}^{\xi x} d \xi
\end{gathered}
$$

($k=1$, if $j=2$ and $k=2$, if $j=1$).
The functions $F_{j}(\xi)(j=1,2)$ are entire functions of the first order [2] and each of them is an even function of ξ; therefore, according to Hadamard's theorem the Weierstrass representation for each of them has the form

$$
F_{j}(\xi)=d_{j} \prod_{m=1}^{\infty}\left(1-\xi^{2} / a_{m j}^{2}\right)
$$

where d_{j} is a constant and $a_{m j}$ are zeros of the function $F_{j}(\xi)(m=1,2, \ldots, \infty)$. Using the expressions for $F_{j}(\xi)$ we readily obtain

$$
d_{j}=\lim _{\xi \rightarrow 0} F_{j}(\xi)=\lim F_{j}^{+}(\xi)=F_{j}^{+}(0)=\beta_{j} \quad(j=1,2)
$$

As a result, according to the residue theory, for $x>0(\operatorname{Re} \xi<0)$, we obtain

$$
T_{j}^{*}(x, y)=\frac{q}{\lambda_{j} \beta_{j}} \sum_{m=1}^{\infty}\left\{\left[\alpha_{j} a_{m 0}^{-} \cos \left(a_{m 0}^{-}\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(a_{m 0}^{-}\left(y-y_{j}\right)\right)\right] X\left(a_{m 0}^{-}\right) /\left(a_{m 0}^{-}\right)^{2} \mathrm{e}^{a_{m 0}^{-}}\right\} .
$$

Here

$$
X(y)=\prod_{m=1}^{\infty}\left(1-y / a_{m k}^{-}\right) /\left(\prod_{m=1}^{\infty}\left(1-y / a_{m j}^{+}\right) \prod_{m=1}^{\infty}\left(1-y / a_{m 0}^{-}\right)\right) ;
$$

a prime indicates that terms in the products are dropped if they are equal to zero; $a_{m}^{ \pm}$are zeros of the functions $F_{j}(\xi)(j=0,1,2$ and $m=1,2, \ldots, \infty)$ lying on the right-hand and left-hand complex half-planes, respectively.

For $x<0(\operatorname{Re} \xi>0)$ we have
$T_{j}^{*}(x, y)=-\frac{q}{\lambda_{j} \beta_{j}}\left\{\sum_{m=1}^{\infty}\left[\alpha_{j} a_{m j}^{+} \cos \left(a_{m j}^{+}\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(a_{m}^{+}\left(y-y_{j}\right)\right)\right] X\left(a_{m}^{+}\right) /\left(a_{m j}^{+}\right)^{2} \mathrm{e}^{a_{m}^{+}{ }^{I}}+\beta_{j}\left(y-y_{j}\right)+\alpha_{j}\right\}$.
So far we have assumed that $q=$ const. If q appearing in formulas (6) has the form

$$
q=\lambda_{1} \partial T_{2}^{(0)} /\left.\partial y\right|_{y=0}=\lambda_{2} \partial T_{2}^{(0)} /\left.\partial y\right|_{y=0}=q_{0} e^{p_{n} x},
$$

Fig. 1.
where $p_{n}>0(x<0)$, it is sufficient to set $A_{1}^{*}(\xi)=a /\left(F^{-}(\xi)\left(\xi-p_{n}\right)\right)$. Taking into account that the function $A_{1}^{*}(\xi)$ now has an additional pole at the point $\xi=p_{n}$, after analogous calculations ($p_{n} \neq a_{m j} ; n, m=1,2, \ldots$; $j=0,1,2)$, we find

$$
\begin{align*}
T_{j}^{*}(x, y) & =\frac{q}{\lambda_{j} \beta_{j}}\left\{\sum_{m=1}^{\infty}\left[\alpha_{j} a_{m 0}^{-} \cos \left(a_{m 0}^{-}\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(a_{m 0}^{-}\left(y-y_{j}\right)\right)\right] X\left(a_{m 0}^{-}\right) \mathrm{e}_{m 0}^{-} x /\left(a_{m 0}^{-}\right)^{2}\right\} \quad(x>0) ; \tag{22}\\
T_{j}^{*}(x, y) & =-\frac{q}{\lambda_{j} \beta_{j}}\left\{\sum_{m=1}^{\infty}\left[\alpha_{j} a_{m j}^{+} \cos \left(a_{m j}^{+}\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(a_{m j}^{+}\left(y-y_{j}\right)\right)\right] X\left(a_{m j}^{+}\right) \mathrm{e}_{m j}^{a_{m}^{+} x} /\left(\left(a_{m j}^{+}\right)^{2}\left(a_{m j}^{+}-p_{n}\right)\right)\right. \\
& \left.+\left[\alpha_{j} p_{n} \cos \left(p_{n}\left(y-y_{j}\right)\right)+\beta_{j} \sin \left(p_{n}\left(y-y_{j}\right)\right)\right] X\left(p_{n}\right) \mathrm{e}^{-p_{n} x} / p_{n}^{2}+\beta_{j}\left(y-y_{j}\right)+\alpha_{j}\right\} \quad(x<0) . \tag{23}
\end{align*}
$$

Since any function $f(t)$ that is continuous on the interval $[0,1]$ can be approximated with any degree of accuracy by a polynomial of the form $Q_{N}(t)=\sum_{n=0}^{N} q_{n} t^{p_{n}}\left(t^{p_{n}}\right.$ is a complete set of functions in the interval $[0,1]$ and p_{n} are real), introducing new variable $t=\mathrm{e}^{x}(x<0)$, we write the function $q(x)$ as

$$
q(x)=q(\ln t)=q_{*}(t)=\sum_{k=0}^{\infty} q_{k} t^{p_{k}}=\sum_{k=0}^{\infty} q_{k} e^{p_{k} x} .
$$

The solution then is represented by a superposition of solutions (22) and (23). The function $q(x)$ is not a constant if γ_{j} are functions of x. Then it is sufficient to apply a Laplace transform with respect to the x coordinate to determine $T_{j}^{(0)}(x, y)$ and $q(x)=\lambda_{1} \partial T^{(0)} /\left.\partial y\right|_{y=0}$. Summing solutions for (22) and (23), we obtain the desired solution for $q(x)=\sum_{k=0}^{\infty} q_{k} \mathrm{e}^{p_{k} x}$. Figure 1 shows the temperature $T_{j}(x, y)$ at the point $y=0$ as a function of x on different sides of the boundary for the case of $\alpha_{j}=0, \beta_{j}=1 \quad(j=1,2), \gamma_{1}=-1$, $\gamma_{2}=0, \gamma=1, h_{1}=1, h_{2}=2$ (curves 1 and 2 represent the temperature distribution at the external surfaces, curves 3 and 4 , on the sides of the slit, and curve 5 , in the ideal contact region).

This work was partially supported by the International Science Foundation (Grant No. N2J000).

REFERENCES

1. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1973).
2. B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1968).
